
Software Engineering Principles
The TriBITS Lifecycle Model

Mike Heroux

Ross Bartlett (ORNL)

Jim Willenbring (SNL)

TriBITS Lifecycle Model 1.0 Document

Motivation for the TriBITS Lifecycle
Model

Overview of Trilinos

•  Provides a suite of numerical solvers, discretization methods and support
utilities to support predictive simulation.	

•  Provides a decoupled and scalable development environment to allow for
algorithmic research and production capabilities => “Packages”	

•  Mostly C++ with some C, Fortran, Python …	

•  Advanced object-oriented and generic C++ …	

•  Freely available under open-source BSD and LGPL licenses ...	

Current Status	

•  Current Release Trilinos 11.0	

Trilinos website	

 http://trilinos.sandia.gov (soon to be http://trilinos.org)	

Many CSE organizations and individuals are adverse to using externally developed
CSE software!
Using externally developed software can be as risk!

•  External software can be hard to learn
•  External software may not do what you need
•  Upgrades of external software can be risky:

•  Breaks in backward compatibility?
•  Regressions in capability?

•  External software may not be well supported
•  External software may not be support over long term (e.g. KAI C++)

What can reduce the risk of depending on external software?
•  Apply strong software engineering processes and practices (high quality, low

defects, frequent releases, regulated backward compatibility, …)
•  Ideally … Provide long term commitment and support (i.e. 10-30 years)
•  Minimally … Develop Self-Sustaining Software (open source, clear intent, clean

design, extremely well tested, minimal dependencies, sufficient documentation,
…)

Obstacles for the Reuse and Assimilation of CSE Software

Background

TriBITS, Lifecycle Models, Lean/Agile

TriBITS: Tribal/Trilinos Build, Integrate, Test System

•  Based on Kitware open-source toolset CMake, CTest, and Cdash developed during the
adoption by Trilinos but later extended for VERA, SCALE and other projects.

•  Built-in CMake-based package architecture support for partitioning a project into ‘Packages’
with carefully regulated dependencies with numerous features including:

–  Automatic enabling of upstream and downstream packages (critical for large projects like Trilinos,
SCALE, and CASL)

–  Integrated MPI and CUDA support
–  Integrated TPL support (coordinate common TPLs across unrelated packages, common behavior for

user configuration, etc.)
–  Removal of a lot of boiler-plateCMake code for creating libraries, executables, copying files, etc. …

•  Powerful TRIBITS_ADD_[ADVANCED]_TEST(…) wrapper CMake functions to create
advanced tests

•  Integrated support for add-on repositories with add-on packages.
•  TribitsCTestDriver.cmake testing driver:

–  Partitioned package-by-package output to CDash and reporting on a package-by-package basis
–  Failed packages don’t propagate errors to downstream packages
–  Integrated coverage and memory testing (showing up on CDash)
–  Nightly and continuous integration (CI) test driver.

•  Pre-push synchronous CI testing with the Python checkin-test.py script
•  In addition: TribitsDashboardDriver system, download-cmake.py and numerous other tools

Defined: Life-Cycle, Agile and Lean

•  Software Life-Cycle: The processes and practices used to design, develop, deliver and ultimately
discontinue a software product or suite of software products.

•  Example life-cycle models: Waterfall, Spiral, Evolutionally Prototype, Agile, …
•  Agile Software Engineering Methods:

•  Agile Manifesto (2001) (Capital ‘A’ in Agile)
•  Founded on long standing wisdom in SE community (40+ years)
•  Push back against heavy plan-driven methods (CMM(I))
•  Agile Design: Simple design, continuous incremental (re)design and refactoring as new features are

developed and software is reused.
•  Agile Quality: Keep defects out using Test Driven Development (TDD), unit tests, collaborative

development.
•  Agile Integration: Software needs to be integrated early and often.
•  Agile Delivery: Software should be delivered to real (or as real as we can make them) customers is

short (fixed) intervals.
•  Becoming a dominate software engineering approach

•  Lean Software Engineering Methods:
•  Adapted from Lean manufacturing approaches (e.g. the Toyota Production System).
•  Focus on optimizing the value chain, small batch sizes, minimize cycle time, automate repetitive

tasks, …
•  Agile methods fall under Lean …

Validation-Centric Approach (VCA):
Common Lifecycle Model for CSE Software

Central elements of validation-centric approach (VCA) lifecycle model
•  Develop the software by testing against real early-adopter customer applications
•  Manually verify the behavior against applications or other test cases

Advantages of the VCA lifecycle model:
•  Assuming customer validation of code is easy (i.e. linear or nonlinear algebraic

equation solvers => compute the residual) …
•  Can be very fast to initially create new code
•  Works for the customers code right away

Problems with the VCA lifecycle model:
•  Does now work well when validation is hard (i.e. ODE/DAE solvers where no

easy to compute global measure of error exists)
•  Re-validating against existing customer codes is expensive or is often lost

(i.e. the customer code becomes unavailable).
•  Difficult and expensive to refactor: Re-running customer validation tests is too

expensive or such tests are too fragile or inflexible (e.g. binary compatibility
tests)

VCA lifecycle model often leads to expensive or unmaintainable codes.

Overview of the

TriBITS Lifecycle Model

Goals for the TriBITS Lifecycle Model

•  Allow Exploratory Research to Remain Productive: Only minimal practices for
basic research in early phases

•  Enable Reproducible Research: Minimal software quality aspects needed for
producing credible research, researches will produce better research that will stand
a better chance of being published in quality journals that require reproducible
research.

•  Improve Overall Development Productivity: Focus on the right SE practices at
the right times, and the right priorities for a given phase/maturity level, developers
work more productively with acceptable overhead.

•  Improve Production Software Quality: Focus on foundational issues first in early-
phase development, higher-quality software will be produced as other elements of
software quality are added.

•  Better Communicate Maturity Levels with Customers: Clearly define maturity
levels so customers and stakeholders will have the right expectations.

Defined: Self-Sustaining Software

•  Open-source: The software has a sufficiently loose open-source license allowing the source
code to be arbitrarily modified and used and reused in a variety of contexts (including
unrestricted usage in commercial codes).

•  Core domain distillation document: The software is accompanied with a short focused
high-level document describing the purpose of the software and its core domain model.

•  Exceptionally well testing: The current functionality of the software and its behavior is
rigorously defined and protected with strong automated unit and verification tests.

•  Clean structure and code: The internal code structure and interfaces are clean and
consistent.

•  Minimal controlled internal and external dependencies: The software has well structured
internal dependencies and minimal external upstream software dependencies and those
dependencies are carefully managed.

•  Properties apply recursively to upstream software: All of the dependent external
upstream software are also themselves self-sustaining software.

•  All properties are preserved under maintenance: All maintenance of the software
preserves all of these properties of self-sustaining software (by applying Agile/Emergent
Design and Continuous Refactoring and other good Lean/Agile software development
practices).

TriBITS Lifecycle Maturity Levels

0: Exploratory (EP) Code

1: Research Stable (RS) Code

2: Production Growth (PG) Code

3: Production Maintenance (PM) Code

-1: Unspecified Maturity (UM) Code

0: Exploratory (EP) Code

• Primary purpose is to explore alternative approaches and prototypes, not
to create software.

• Generally not developed in a Lean/Agile consistent way.
• Does not provide sufficient unit (or otherwise) testing to demonstrate

correctness.
• Often has a messy design and code base.
• Should not have customers, not even “friendly” customers.
• No one should use such code for anything important (not even for

research results, but in the current CSE environment the publication of
results using such software would likely still be allowed).

• Generally should not go out in open releases (but could go out in releases
and is allowed by this lifecycle model).

• Does not provide a direct foundation for creating production-quality
code and should be put to the side or thrown away when starting
product development.

1: Research Stable (RS) Code

•  Developed from the very beginning in a Lean/Agile consistent manner.

•  Strong unit and verification tests (i.e. proof of correctness) are written as the
code/algorithms are being developed (near 100% line coverage).

•  Has a very clean design and code base maintained through Agile practices of
emergent design and constant refactoring.

•  Generally does not have higher-quality documentation, user input checking and
feedback, space/time performance, portability, or acceptance testing.

•  Would tend to provide for some regulated backward compatibility but might not.

•  Is appropriate to be used only by “expert” users.

•  Is appropriate to be used only in “friendly” customer codes.

•  Generally should not go out in open releases (but could go out in releases and is
allowed by this lifecycle model).

•  Provides a strong foundation for creating production-quality software and should
be the first phase for software that will likely become a product.

•  Supports reproducible research.

2: Production Growth (PG) Code

•  Includes all the good qualities of Research Stable code.
• Provides increasingly improved checking of user input errors and better

error reporting.
• Has increasingly better formal documentation (Doxygen, technical reports,

etc.) as well as better examples and tutorial materials.
• Maintains clean structure through constant refactoring of the code and

user interfaces to make more consistent and easier to maintain.
• Maintains increasingly better regulated backward compatibility with fewer

incompatible changes with new releases.
• Has increasingly better portability and space/time performance

characteristics.
• Has expanding usage in more customer codes.

3: Production Maintenance (PM) Code

•  Includes all the good qualities of Production Growth code.
• Primary development includes mostly just bug fixes and performance

tweaks.
• Maintains rigorous backward compatibility with typically no deprecated

features or any breaks in backward compatibility.
• Could be maintained by parts of the user community if necessary (i.e. as

“self-sustaining software”).

-1: Unspecified Maturity (UM) Code

• Provides no official indication of maturity or quality
•  i.e. “Opt Out” of the TriBITS Lifecycle Model

Typical non-Agile (i.e. VCA) CSE Lifecycle

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Unit and Verification Testing	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Acceptance Testing	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Code and Design Clarity	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Documentation and Tutorials	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

User Input Checking and Feedback	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Backward compatibility	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Portability	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Space/Time Performance	

Research	

	

Production	

Growth	

	

Production	

Maintenance	

	

Cost per new feature	

Time	

Pure Lean/Agile Lifecycle: “Done Done”

Unit and Verification Testing	
 Acceptance Testing	

Code and Design Clarity	
 Documentation and Tutorials	

User Input Checking and Feedback	
 Backward compatibility	

Portability	

Space/Time Performance	

Time	

Cost per new feature	

Proposed TriBITS Lean/Agile Lifecycle

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Unit and Verification Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Acceptance Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Code and Design Clarity	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Documentation and Tutorials	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

User Input Checking and Feedback	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Backward compatibility	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Portability	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Space/Time Performance	

Cost per new feature	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Time	

TriBITS (−) vs. VCA (--)

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Unit and Verification Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Acceptance Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Code and Design Clarity	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Documentation and Tutorials	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

User Input Checking and Feedback	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Backward compatibility	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Portability	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Space/Time Performance	

Cost per new feature	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Time	

TriBITS(−) vs. Pure Lean/Agile (--)

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Unit and Verification Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Acceptance Testing	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Code and Design Clarity	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Documentation and Tutorials	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

User Input Checking and Feedback	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Backward compatibility	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Portability	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Space/Time Performance	

Cost per new feature	

Research	

Stable	

Production	

Growth	

	

Production	

Maintenance	

	

Time	

End of Life?

Long-term maintenance and end of life issues for Self-Sustaining Software:

• User community can help to maintain it
•  If the original development team is disbanded, users can take parts they

are using and maintain it long term
• Can stop being built and tested if not being currently used
• However, if needed again, software can be resurrected, and continue to

be maintained

NOTE: Distributed version control using tools like Git and Mercurial greatly
help in reducing risk and sustaining long lifetime.

Usefulness Maturity and Lifecycle Phases

• NOTE: For research-driven software achieving “Done Done” for unproven
algorithms and method is not reasonable!

• CSE Software should only be pushed to higher maturity levels if the
software, methods, etc. have proven to be “Useful”.

Definition of “Usefulness”:
•  The algorithms and methods implemented in the software have been

shown to effectively address a given class of problems, and/or
• A given piece of software or approach makes a customer produce higher

quality results, and/or
• Provides some other measure of value

Addressing existing Legacy Software?

• Our definition of “Legacy Software”: Software that is too far from away
from being Self-Sustaining Software, i.e:

–  Open-source
–  Core domain distillation document
–  Exceptionally well testing
–  Clean structure and code
–  Minimal controlled internal and external dependencies
–  Properties apply recursively to upstream software

• Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to
such software?

• Answer: Grandfather them into the TriBITS Lifecycle Model by applying
the Legacy Software Change Algorithm.

Grandfathering of Existing Packages

Agile Legacy Software Change Algorithm:
1. Identify Change Points
2. Break Dependencies
3. Cover with Unit Tests
4. Add New Functionality with Test Driven Development (TDD)
5. Refactor to removed duplication, clean up, etc.
Grandfathered Lifecycle Phases:
1. Grandfathered Research Stable (GRS) Code
2. Grandfathered Production Growth (GPG) Code
3. Grandfathered Production Maintenance (GPM)
 Code

NOTE: After enough iterations of the Legacy Software
Change Algorithm the software may approach Self-
Sustaining software and be able to remove the
“Grandfathered” prefix.

Cost per new feature	

Legacy	

Code	

Grandfathered	

Production	

Maintenance	

Production	

Maintenance	

	

Software Engineering and HPC
Efficiency vs. Other Quality Metrics

Source:	

Code Complete	

Steve McConnell	

Summary of TriBITS Lifecycle Model

•  Motivation:
–  Allow Exploratory Research to Remain Productive
–  Enable Reproducible Research
–  Improve Overall Development Productivity
–  Improve Production Software Quality
–  Better Communicate Maturity Levels with Customers

•  Self Sustaining Software => The Goal of the TriBITS Lifecycle Model
–  Open-source
–  Core domain distillation document
–  Exceptionally well testing
–  Clean structure and code
–  Minimal controlled internal and external dependencies
–  Properties apply recursively to upstream software
–  All properties are preserved under maintenance

•  Lifecycle Phases:
–  0: Exploratory (EP) Code
–  1: Research Stable (RS) Code
–  2: Production Growth (PG) Code
–  3: Production Maintenance (PM) Code

•  Grandfathering existing Legacy packages into the lifecycle model:
–  Apply Legacy Software Change Algorithm => Slowly becomes Self-Sustaining Software over time.
–  Add “Grandfathered” prefix to RS, PG, and PM phases.

